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Inventory of properties - a prequel
Structural:

DeRham cohomology; inf-sup conditions; conservation...

Typically achieved by topological means:

— careful placement of the variables on the mesh;
— special grid structure, e.g., topologically dual grids

Game changer: Discrete exterior calculus, mimetic FD,

Challenges: PDEs that won’t fit neatly in a cohomological structure

— Diminishing returns for complex, nonlinear multiphysics problems?

Qualitative:

Maximum principle, local solution bounds, symmetries.

Correlations between variables: e.g., between two passive tracers.

Challenges: conventional ways to preserve these properties typically

– impose restrictions on the mesh, .e.g, Cartesian, and/or
– entangle accuracy with the preservation of the property,

Game changer: Optimization? May be, but not yet...
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Optimization strategy - an overview

Atomistic-to-continuum
coupling

ATOMISTIC MODEL FINITE ELEMENTS

SAND 2013-4186C 

Optimization-based AtC formulation (OB-AtC) 

  

! 

Cuc = f c     in "c
!

uc = # c     on $c
%

uc = 0      on $c
+

& 

' 
( ( 

) 
( 
( 

! 

1

! 

2

! 

N

! 

N "1

  

! 

"a
!

! 

"a
+

! 

"a
# ! 

"L#1
a

! 

"L
a

! 

"c
+

! 

"c
#

  

! 

"c
!! 

"K +1
c

Minimize the artificial mismatch 
energy subject to the atomistic and 
continuum force balance equation 

Objective: measures the mismatch energy 
States:      atomistic and continuum solutions 
Controls:  artificial boundary conditions  

Atomistic and continuum problems are patch test consistent individually 

⇒ OB-AtC passes patch test by construction! 
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Optimization-
based modeling

(DOE/ASCR)

min
u
‖u − uT‖

s.t. Lh(u) ≥ 0

Operator splitting and
solver synthesis
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Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap
Mathematical formulation
Theoretical properties and benefits
Algorithm and computational cost

Mass form of optimization-based remap
Mathematical formulation
Algorithm and computational cost

Flexibility of OBR
Optimization-based transport on the sphere
Adaptable targets and smoothness indicators
Passive tracer transport
High-order remap: BLAST, HOMME
Tensor remap: ALEGRA
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Solution transfer
Given: Discrete representation fA of function f on mesh A.

Find: Accurate discrete representation fB of f on mesh B,
subject to physical constraints:

conservation of mass, energy, etc.

preservation of monotonicity

physically meaningful ranges for variables:
density ≥ 0, concentration ∈ [0, 1]

Critical task in computational science:

shock-hydrodynamics: ALEGRA, BLAST, etc.

tracer transport: sea ice – CICE, atmosphere – HOMME, etc.

mesh repair, rezone, untangling, reconnection, conservative
regridding in, e.g., big ocean data

transfer of simulation data between heterogeneous numerical models

data visualization on arbitrary polygonal grids

solution recovery for resilient computing

,
P. Bochev Preservation of physical properties SAND 2013-8197P 6



Solution transfer Scalar remap Flux-OBR Mass-OBR Flexibility

Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap
Mathematical formulation
Theoretical properties and benefits
Algorithm and computational cost

Mass form of optimization-based remap
Mathematical formulation
Algorithm and computational cost

Flexibility of OBR
Optimization-based transport on the sphere
Adaptable targets and smoothness indicators
Passive tracer transport
High-order remap: BLAST, HOMME
Tensor remap: ALEGRA

,
P. Bochev Preservation of physical properties SAND 2013-8197P 6



Solution transfer Scalar remap Flux-OBR Mass-OBR Flexibility

Mass-density remap
Given: Old mesh C (Ω) and mean density values ρi on old mesh cells ci .

Find: Approximations m̃i of masses on a new mesh C̃ (Ω) with cells c̃i ,

m̃i ≈ m̃ exact
i =

∫
c̃i

ρ(x)dV , i = 1, . . . ,C ; subject to

C1. Mass conservation:
∑C

i=1 m̃i =
∑C

i=1 mi = M .

C2. Second-order accuracy: If ρ(x) is a global linear function on Ω,
then the mass approximations are exact,

m̃i = m̃ exact
i =

∫
c̃i

ρ(x)dV , i = 1, . . . ,C .

C3. Local bounds: The approximations of the mean density on the new
cells, ρ̃i = m̃i/V (c̃i ), are bounded by the old neighborhood extrema

ρmin
i ≤ ρ̃i ≤ ρmax

i , i = 1, . . . ,C , or equivalently,

m̃min
i := ρmin

i V (c̃i ) ≤ m̃i ≤ ρmax
i V (c̃i ) =: m̃max

i , i = 1, . . . ,C .
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Some history
19xx–2010:

Scalar remap is a long-studied problem.

The constraints (C1)–(C3) are typically handled by construction:
— a careful choice of variables in the remap scheme;
— a special reconstruction procedure; and
— a particular choice of ‘limiter’ (WikipediA: 15 slope limiters).

Challenges: accuracy loss, mesh/cell dependence, robustness.

Game changer:
Flux-corrected remap (FCR), Shashkov et al., J. Comp. Phys., 2010.

2010–2012:

We use globally constrained optimization to reconcile (C1)–(C3).

A mathematically rigorous way to handle constraints.

Elegant theory, and connections to methods like FCR.

Improved accuracy; improved robustness; general applicability.

2012–2013:

Optimization-based remap at the cost of conventional remap.

,
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Solution transfer
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Flux form of OBR

1. Given the side-to-cell incidence matrix D,
or discrete divergence, define mass update

m̃ = m + DF ,

where F approximates the exact fluxes over
the swept regions rj ,

Fj ≈ F exact
j =

∫
rj

ρ(x)dV ; j = 1, . . . ,S .

rj1

rj2

rj3

rj4

m̃i = mi + (DF )i =

mi +
∑

k∈{j1,...,j4} σkFk

2. Compute target F T
j :=

∫
rj

ρh(x)dV , j = 1, . . . ,S , for some density

reconstruction ρh(x) that is exact for linear functions. Solve:

 minimize
F

1

2
‖F − F T‖2

`2
subject to

m̃min ≤ m + DF ≤ m̃max .

,
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Immediate properties

Local bounds are enforced directly: m̃min ≤ m + DF ≤ m̃max.

Mass conservation is implicit: follows from the divergence form∑C
i=1 m̃i =

∑C
i=1 mi +

∑C
i=1(DF )i︸ ︷︷ ︸

=0, divergence form

=
∑C

i=1 mi .

Theorem: Second-order accuracy. A sufficient condition for OBR
to recover linear densities exactly is that the centroid of any new
cell remain in the convex hull of the centroids of its old neighbors.

Less restrictive!

(a) original (b) admissible (c) inadmissible

Independent of dimension and cell topology.

Separation of concerns: Optimally accurate and monotone!

,
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Relation to Flux-Corrected Remap (FCR)

Theorem. FCR can be formulated as a global optimization problem.

(1) The FCR cost function is equivalent to the OBR cost function.

(2) The FCR feasible set is always a subset of the OBR feasible set.

Compressive Mesh Motion

! 

x
1

! 

x
2

! 

x
3

! 

x
4

! 

˜ x 
1

! 

˜ x 
2

! 

˜ x 
3

! 

˜ x 
4

! 

"
1

b

! 

"
1

! 

"
3

b

! 

"
3

! 

"
2

! 

˜ " 
1

! 

˜ " 
2

! 

˜ " 
3

! 

"
1

! 

"
2

! 

"
3

! 

"
1

! 

"
2

OBR Feasible Set

!"

#"

!
"
#
$%
&'

!
"
#
$%
&'

!"#$(&'

!"#$(&'

! 

a
1,2

! 

a
2,3

$"

%"

&"

'"

FCR Feasible Set

!
"
#
$%
&'

!"#$(&' )*#$+&'

)*#$+&'

)*#$+&'

)
*
#
$%
&'

)
*
#
$%
&'

)
*
#
$%
&'

! 

a
1,2

! 

a
2,3

!"

#"

$"%"

,
P. Bochev Preservation of physical properties SAND 2013-8197P 11



Solution transfer Scalar remap Flux-OBR Mass-OBR Flexibility

1. OBR preserves shape when FCR may not

Original After a single OBR step After a single FCR step
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Level sets of the cost function and the feasible sets:
Red region = OBR feasible set; contains flux target F T = (1,1).

Solid horizontal segment (black) = FCR feasible set.
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2. OBR preserves monotonicity when FCR may not
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Figure: A 3×3 uniform initial grid (left pane) and the compressed “torture”
grid (right pane) with a 4×4-fold compression of the middle cell.
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Figure: Linear density ρ(x , y) = x remapped from the uniform 3× 3 grid to
the compressed “torture” grid with ` = 16. Left to right: the donor-cell
method, FCR, OBR. It is clear that OBR gives the best density approximation.
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3. OBR is more accurate than FCR
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Remap of smooth (sine) density using OBR

#cells #remaps L1 err L2 err L∞ err L1 rate L2 rate L∞ rate

128×128 640 2.69e-04 3.65e-04 2.03e-03 — — —
256×256 1280 6.71e-05 9.08e-05 5.07e-04 2.00 2.01 2.00
512×512 2560 1.68e-05 2.27e-05 1.20e-04 2.00 2.00 2.04
1024×1024 5120 4.19e-06 5.66e-06 2.69e-05 2.00 2.00 2.08

Remap of smooth (sine) density using FCR

128×128 640 2.81e-04 3.47e-04 1.23e-03 — — —
256×256 1280 9.23e-05 1.19e-04 5.14e-04 1.61 1.54 1.26
512×512 2560 3.65e-05 5.05e-05 2.50e-04 1.47 1.39 1.15
1024×1024 5120 1.69e-05 2.39e-05 1.24e-04 1.35 1.28 1.10

,
P. Bochev Preservation of physical properties SAND 2013-8197P 14



Solution transfer Scalar remap Flux-OBR Mass-OBR Flexibility

Flux-form OBR algorithm

How about speed?

Rather than solve minimize
F

1

2
‖F − F T‖2

`2
subject to

m̃min −m ≤ DF ≤ m̃max −m

directly, we solve its equivalent dual reformulation
minimize

λ,µ

1

2
‖DTλ−DTµ‖2

2 − 〈λ, m̃min −m −DF T〉

−〈µ,−m̃max + m + DF T〉

subject to λ ≥ 0, µ ≥ 0 .

Thus, we trade the complexity in the globally coupled inequality
constraint for a more complex objective function.

,
P. Bochev Preservation of physical properties SAND 2013-8197P 15



Solution transfer Scalar remap Flux-OBR Mass-OBR Flexibility

Flux-form OBR algorithm
Some notation

Define system matrix H ∈ R2C×2C and vector b ∈ R2C

H =

[
DDT −DDT

−DDT DDT

]
b =

[
DF T − m̃min + m
−DF T + m̃max −m

]
Define the diagonal operator, Diag : R2C → R2C×2C , as

[Diag(x)]ij =

{
xi when i = j
0 ” i 6= j

.

Define the operator v : R2C → R2C as

[v(x)]i =

{
xi when [Hx + b]i ≥ 0
1 ” [Hx + b]i < 0

.

Define the operator K : R2C → R2C×2C as

[K ]ii =

{
1 when [Hx + b]i ≥ 0
0 ” [Hx + b]i < 0

.
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Flux-form OBR algorithm

Semismooth Newton

It can be shown that under mild assumptions the solution of the
bound-constrained problem is equivalent to the solution of the
piecewise differentiable system of equations

Diag(v(x)) (Hx + b) = 0 .

Apply Newton’s method to the nonlinear system by solving

(K(x)Diag(Hx + b) + Diag(v(x)) H ) p = −Diag(v(x)) (Hx + b)

for the update p at a given iterate x , followed by x ← x + p.

Each iteration entails the solution of a large linear system.

Linear complexity, O(C), where C is the number of mesh cells.

Conjecture: Parallelizes as well as multigrid → DDT operator.

We will examine the speed of this approach in the context of a
transport application.
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Optimization-Based Transport

We can extend the flux-form OBR to a conservative and bounds
preserving scheme (OBT) for the scalar transport equation:

∂ρ

∂t
+∇ · ρv = 0 on Ω× [0,T ], ρ(x, 0) = ρ0(x)

Incremental remap algorithm (semi-Lagrangian scheme)

1 Project departure grid to arrival grid: C(Ω(t)) 7→ C(Ω(t + ∆t))

2 Lagrangian transport: mi (t + ∆t) = mi (t), ρi (t + ∆t) = mi (t)/µi (t + ∆t)

3 Remap: m(t + ∆t) 7→ m̃ and ρ(t + ∆t) 7→ ρ̃

!"
!"

!"#$%&

!"
#$%&'"

t! t+"t! t+"t!

'#()*&

! 

mi(t) = "( x, t)dV
ci ( t )
#

! 

mi(t +"t) = mi(t)
! 

ci ( t )

! 

ci ( t + "t )
! 

C("(t))

! 

C("(t +#t))

! 

˜ C (") = C("(t))

! 

C(") =C("(t +#t))

cell mass mi =
∫

ci
ρ(x, t)dV

cell area µi =
∫

ci
dV

cell mean density ρi = mi/µi

OBT inherits the robustness & accuracy of OBR but is it fast?
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Performance of the flux-form OBT

Initial FCR Final OBT Final
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Figure: After one full revolution (810 time steps) on a 128×128 mesh.

FCR Flux-OBT
mesh steps time(sec) time(sec) ratio

64×64 408 3.3 63.7 19.3
128×128 810 26.4 496.4 18.8
256×256 1614 229.1 3464.2 15.1

Table: Computational cost. Flux-form OBT is not competitive!
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Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap
Mathematical formulation
Theoretical properties and benefits
Algorithm and computational cost

Mass form of optimization-based remap
Mathematical formulation
Algorithm and computational cost

Flexibility of OBR
Optimization-based transport on the sphere
Adaptable targets and smoothness indicators
Passive tracer transport
High-order remap: BLAST, HOMME
Tensor remap: ALEGRA

,
P. Bochev Preservation of physical properties SAND 2013-8197P 19



Solution transfer Scalar remap Flux-OBR Mass-OBR Flexibility

Mass form of OBR

1. Define mass update

m̃ = m + δm ,

where δm approximates the exact mass
increments between new and old cells:

δmi ≈ δm exact
i =

∫
c̃i

ρ(x)dV −
∫

ci

ρ(x)dV ;

where i = 1, . . . ,C .

m̃i = mi + δmi

Note: δmi = (DF )i

2. Compute target δmT
i :=

∫
c̃i

ρh(x)dV −
∫

ci

ρh(x)dV , i = 1, . . . ,C , for

density ρh(x) that is exact for linear functions. Solve:
minimize

δm

1

2
‖δm − δmT‖2

`2
subject to

∑C
i=1 δmi = 0 and m̃min ≤ m + δm ≤ m̃max .
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Mass-form OBR algorithm

We solve 
minimize

δm

1

2
‖δm − δmT‖2

`2
subject to

C∑
i=1

δmi = 0 and m̃min ≤ m + δm ≤ m̃max .

Known as the singly linearly constrained QP with simple bounds, see
Dai, Fletcher (2006, Math. Program.).

Key observation: The related optimization problem without the mass
conservation constraint,

∑C
i=1 δmi = 0, is fully separable!

The related problem can be solved by independently (and concurrently)
solving C one-dimensional quadratic programs with simple bounds.

Goal: Satisfy the second constraint,
∑C

i=1 δmi = 0, “in a few iterations”.
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Mass-form OBR algorithm
Define Lagrangian functional L : RC × R× RC × RC → R,

L(δm, λ, µ1, µ2) =
1

2

C∑
i=1

(δmi − δmT
i )2 − λ

C∑
i=1

δmi −

∑C
i=1 µ1,i

(
δmi − m̃min

i + mi

)
−
∑C

i=1 µ2,i

(
m̃max

i −mi − δmi

)
,

where δm ∈ RC are the primal optimization variables, and

λ ∈ R, µ1 ∈ RC , and µ2 ∈ RC are the dual optimization variables.

KKT conditions:

δmi = δmT
i + λ+ µ1,i − µ2,i ; i = 1, . . . ,C

m̃min
i −mi ≤ δmi ≤ m̃max

i −mi ; i = 1, . . . ,C

µ1,i ≥ 0 , µ2,i ≥ 0; i = 1, . . . ,C

µ1,i

(
δmi − m̃min

i + mi

)
= 0 , µ2,i (−δmi + m̃max

i −mi ) = 0; i = 1, . . . ,C∑C
i=1 δmi = 0
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Mass-form OBR algorithm

We solve the KKT conditions directly.

First, we focus on the conditions in black, separable in the index i . For
any fixed value of λ a solution to the “black” conditions is given by

δmi = δmT
i + λ; µ1,i = µ2,i = 0 if m̃min

i − m
i
≤ δmT

i + λ ≤ m̃max
i − m

i

δmi = m̃min
i − m

i
; µ2,i = 0, µ1,i = δmi − δmT

i − λ if δmT
i + λ < m̃min

i − m
i

δmi = m̃max
i − m

i
; µ1,i = 0, µ2,i = δmT

i − δmi + λ if δmT
i + λ > m̃max

i − m
i
,

for all i = 1, . . . ,C .

Ignoring µ1 and µ2 and treating δmi as a function of λ yields

δmi (λ) = median(m̃min
i −mi , δm

T
i +λ, m̃max

i −mi ) , i = 1, . . . ,C .

This is a trivial, communication-free O(C ) computation.
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Mass-form OBR algorithm
Second, we adjust λ in an outer iteration in order to satisfy

C∑
i=1

δmi (λ) = 0 .

When we find the λ∗ such that
∑C

i=1 δmi (λ
∗) = 0 holds, we will have

solved the full KKT conditions.

The function
∑C

i=1 δmi (λ) is a piecewise linear, monotonically increasing
function of a single scalar variable λ. Therefore, a secant method can
be efficiently employed as the outer iteration.

0
λ

. . . given λp , λc , rp

1 Compute δmi (λc )←
median(m̃min

i − mi , δm
T
i + λc , m̃max

i − mi ) ∀i .

Compute residual rc ←
∑C

i=1 δmi (λc ).

2 Set α← (λp − λc )/(rp − rc ). Set rp ← rc .

3 Set λp ← λc . Set λc ← λc − αrc .

In all our examples, the algorithm requires ≤ 5 secant iterations!
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Performance of the mass-form OBT

Initial FCR Final OBT Final
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Figure: After one full revolution (810 time steps) on a 128×128 mesh.

FCR Flux-OBT Mass-OBT
mesh steps time(sec) time(sec) ratio time(sec) ratio

64×64 408 3.3 63.7 19.3 3.4 1.0
128×128 810 26.4 496.4 18.8 26.2 1.0
256×256 1614 229.1 3464.2 15.1 222.7 1.0

Table: Computational cost. Mass-form OBT: as fast as an explicit scheme!
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Solution transfer

Scalar mass-density remap

Flux form of optimization-based remap
Mathematical formulation
Theoretical properties and benefits
Algorithm and computational cost

Mass form of optimization-based remap
Mathematical formulation
Algorithm and computational cost

Flexibility of OBR
Optimization-based transport on the sphere
Adaptable targets and smoothness indicators
Passive tracer transport
High-order remap: BLAST, HOMME
Tensor remap: ALEGRA
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Optimization-Based Transport on the Sphere

Adaptation to Cubed Sphere Grid

!"

#"

$" %" &"

'"

Six faces of cube projected onto surface of sphere
Discontinuous at panel edges
Avoids polar singularies of lat/lon grid
OBR/OBT extension boils down to swapping the reconstruction
method
Impervious to cell-shapes: can be applied to arbitrary grids,
including polygons.
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Adaptable targets

Cost-function targets are built from the reconstruction:

ρh(x)|ci := ρh
i (x) = ρi + gi · (x− bi ) ∀ci ∈ C (Ω) ,

where ρi are density values on the old cells ci , gi is a least-squares
approximation of the gradient ∇ρ based on ρi from the cells in the
neighborhood N(ci ), and bi is the barycenter of ci .

Define reconstruction residual: qi =
∑

j∈N(ci )

|ρj − ρh
i (bj )| .

Modify the gradient of ρh(x) to obtain adaptable reconstruction:

ρA(x)|ci := ρA
i (x) = ρi + αi (qi )gi · (x− bi ) ∀ci ∈ C (Ω) .

For a given constant γ > 0,

αi (qi ) =

1 if “smooth′′

1 + γ qi/ max
i=1,...,C

{qi} otherwise .
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Dual variables as smoothness indicators


µ1,i = µ2,i = 0 if m̃min

i − m
i
≤ δmT

i + λ ≤ m̃max
i − m

i

µ2,i = 0, µ1,i = (m̃min
i − m

i
) − δmT

i − λ if δmT
i + λ < m̃min

i − m
i

µ1,i = 0, µ2,i = δmT
i − (m̃max

i − m
i
) + λ if δmT

i + λ > m̃max
i − m

i
,

Initial FCR Adaptable OBR

Figure: Transport results for the solid-body rotation test on the sphere, for two
revolutions, left to right and back (1920 time steps) on a 0.75◦ mesh.

FCR Mass-OBR FCR Mass-OBR
mesh steps time(sec) time(sec) ratio L1 error rate L1 error rate

3◦ 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
1.5◦ 960 132.5 151.6 1.1 1.99e-2 0.78 1.36e-3 1.04
0.75◦ 1920 1184.5 1379.0 1.2 1.10e-2 0.78 5.41e-3 1.18
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Figure: Transport results for the solid-body rotation test on the sphere, for two
revolutions, left to right and back (1920 time steps) on a 0.75◦ mesh.

FCR Mass-OBR FCR Mass-OBR
mesh steps time(sec) time(sec) ratio L1 error rate L1 error rate

3◦ 480 17.4 18.2 1.0 3.25e-2 — 2.79e-2 —
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Deformational Flow Test

For a more challenging test case we transport two notched cylinders initially centered at
(λ1, θ1) = (5π/6, 0) and (λ2, θ2) = (7π/6, 0) in the following deformational velocity field

u(λ, θ, t) = 2 sin2
λ sin 2θ cos (πt/T )

v(λ, θ, t) = 2 sin(2λ) cos(θ) cos (πt/T )

with period T = 5. In this case an adaptable target is used with parameters γ1 = 0.1 and
γ2 = 0.5, resulting in a sharper final density distribution and higher convergence rate than
transport with Flux-Corrected Remap (FCR).

Initial Density Density T=2.5 Final Density FCR

MVMT-a transport results for the deformational flow test on the sphere, shown at the time of maximum deformation (t = 2.5) and at the
final time (t = 5) for a total of 2400 time steps on a mesh with 120x120 elements per panel. FCR results shown at right.
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Elements FCR MVMT-a FCR MVMT-a
per panel # steps time(sec) time(sec) L1 error rate L1 error rate

30× 30 600 45.9 46.3 5.59e-1 — 4.58e-1 —
60× 60 1200 281.3 286.9 3.67e-1 0.61 2.49e-1 0.88
120× 120 2400 2103.7 2140.3 2.19e-1 0.68 1.25e-1 0.94

Comparison of L1 errors with respect to the initial condition for Flux-Corrected Remap (FCR) and MVMT-a and comparison of

computational costs as measured by MatlabTM wall-clock times in seconds, on a single Intel Xeon X5450 3.0GHz processor.
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Passive Tracer Transport
The problem:

∂ρT

∂t
+∇ · ρT v = 0 on Ω× [0,T ], T (x, 0) = T0(x)

Linear tracer reconstruction T h(x)|ci
= Ti + gi · (x− ci )

Approximate gradient gi ≈ ∇T

Cell center of mass ci =
∫

ci
xρh(x)dV/

∫
ci
ρh(x)dV

Target tracer T T
i =

∫
c̃i
ρh(x)T h(x)dV∫

c̃i
ρh(x)dV

Optimization
minimize

1

2
‖T̃ − T T‖2

`2
subject to

C∑
i=1

m̃i T̃i = Q and T min
i ≤ T̃i ≤ T max

i i = 1, ...,C .

Challenges:

– need to solve for hundreds and even thousands of tracers simultaneously

– the tracers can be correlated, e.g., αT1 + βT2 = 0
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Passive Tracer Transport

2 linearly correlated tracers T1 and T2

Initial density ρ same as tracer 1

Linear correlation preserved under deformation!

Initial Mid Final
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High-order remap

Software: Constrained Optimization Based Remap Algorithms

BLAST

Next-gen LLNL hydrocode.

Mass-form OBR to enable
conservative and (essentially)
non-oscillatory high-order ALE.

Integration of the COBRA
library is in progress.

Tzanio Kolev, et al.; LDRD.

Research: Energy constraints.

HOMME

The default dynamical core of
the Community Atmosphere /

Earth System Models.

OBR to enable a very fast
conservative and monotone
semi-Lagrangian scheme.

Mark Taylor, et al.; SciDAC 3.

Research: Tracer transport.
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Tensor remap

X1 X2

X3
P

Q
S

dX
X

x1

x2

x3

q
p

s

dx
x

ϕϕϕ

ALEGRA

Shock and multiphysics family of codes,
including solid kinematics.

Challenge: Solid kinematics schemes
fail in presence of large deformations.

Cause: Violation of physical constraints.

Deformation gradient: F = ∂xi

∂XA
ei ⊗ EA .

Constraints — sparse but global:

curl F−1 = 0 and det F > 0 .

Integrated interior-point methods from our
Rapid Optimization Library into ALEGRA.

Jim Kamm, Ed Love, et al.; ASC CSAR.

Much, much harder than scalar remap!
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Summary

Preservation of qualitative properties through ”direct” approaches relies
on the mesh, the variable placement and local ”worst-case scenarios”
⇒ imposes restrictions on mesh and/or accuracy

Optimization-based strategies present an attractive alternative:

– Accuracy is separated from the preservation of physical properties.

– Physical properties can be treated as optimization constraints.

– Discretization is relieved from securing these properties.

– Solution is a globally optimal state: the best possible, with respect to
the target state satisfying the constraints.

OBR is more robust and accurate than explicit limiter-based remappers.

The mass-form OBR algorithm is as fast as a local scheme.

The optimization approach allows for specially tuned targets.

Dual optimization variables may be used to tune targets.

Multi-tracer transport can be done efficiently.

We’ve just scratched the surface - for instance, tensor remap (remap for solid
deformation) needs ”real” optimization.
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